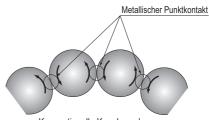
Auswahlkriterien

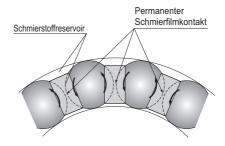
Vorteile der Caged Ball Technology

Vorteile der Caged Ball Technology

[Niedrige Geräuschemission]


Der Einsatz der Caged Ball Technology verhindert das Aneinanderstoßen der Kugeln und die daraus resultierende Geräuschemission. Auch die tangentiale Kugelaufnahme sorgt für einen deutlich ruhigeren Kugelumlauf.

[Langzeitwartungsfrei]


Die Reibung zwischen den Kugeln wird durch die Trennung verhindert. Darüber hinaus dienen die Zwischenräume als Schmierstoffreservoir. So wird eine dauerhafte Wartungsfreiheit mit langen Schmierintervallen erreicht.

[Leichtgängiger Lauf]

Der Einsatz der Caged Ball Technology verhindert die Reibung der Kugeln untereinander und minimiert Drehmomentschwankungen. Dies sorgt für einen leichtgängigen Lauf.

Konventionelle Kugelanordnung

Kugelanordnung mit Caged Technology

[Geringe Geräuschentwicklung]


Geräuschpegeldaten

Da die Kugeln im Kugelgewindetrieb mit Caged Ball Technology nicht zusammenstoßen, wird kein metallisches Geräusch erzeugt. Dies sorgt für einen niedrigen Geräuschpegel.

■Messung der Geräuschemission

[Bedingungen]

Messung	Wert
Beispiel	Kugelgewindetrieb mit Caged Technology HBN3210-5 Konventioneller Typ: Typ BNF3210-5
Hub	600 mm
Schmierung	Schmierfett (Lithiumseifenfett mit Druckadditiv)

90 Konventioneller Typ 85 (BNF3210-5) 80 Typ HBN Geräuschpegel [dB(A)] (HBN3210-5) 75 70 65 60 55 50 45 40 10000 100000 1000000 10000000 $Kugeldurchmesser \times Kugelmittenkreis \times Drehzahl$

Abb. 2 Geräuschpegel von Kugelgewindetrieben

Auswahlkriterien

Vorteile der Caged Ball Technology

[Langzeitwartungsfrei]

Dauertest bei Hochgeschwindigkeit und Belastung

Aufgrund der Kugelumlenkung und der Caged Ball Technology erreicht der Kugelgewindetrieb hohe Drehzahlen und eine sehr gute Laufkultur.

■Hochgeschwindigkeitstest

[Testbedingungen]

Messung	Wert
Beispiel	Hochgeschwindigkeits-Kugelgewinde- trieb mit Caged Ball Technology SDA3110V-5
Drehzahl	5.000 (min ⁻¹)(DN-Wert*: 160.000)
Hub	500 mm
Schmierstoff	THK AFJ-Fett
Menge	4 cm³ (alle 500 km)
Belastung	1,27 kN
Beschleunigung	0,5 G

^{*} DN-Wert: Kugelmittenkreis x Drehzahl

[Testergebnis]

Keine Abweichungen nach 6.000 km.

■Belastungstest

[Testbedingungen]

[Teotocalligatigeti]		
Wert		
Hochgeschwindigkeits-Kugelgewinde- trieb mit Caged Ball Technology SBN5016V-5		
1.500 (min ⁻¹)(DN-Wert*: 79.000)		
400 mm		
THK AFG-Fett		
57,7 cm³ (alle 100 km)		
36,1 kN (0,38 Ca)		
0,5 G		

[Testergebnis]

Keine Abweichung auch nach Erreichen der berechneten nominellen Lebensdauer.

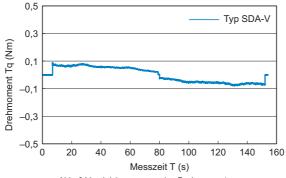
[Leichtgängiger Lauf]

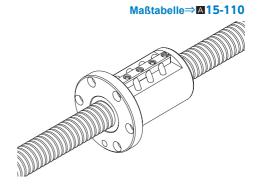
Geringe Drehmomentschwankung

Im Vergleich zu herkömmlichen Kugelgewindetrieben sorgt die Caged Ball Technology für einen sehr gleichmäßigen Lauf mit geringen Drehmomentschwankungen.

[Bedingungen]

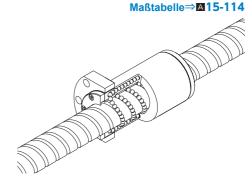
Messung	Wert
Spindeldurchmesser/-steigung	25/5 mm
Spindeldrehzahl	100 min ⁻¹



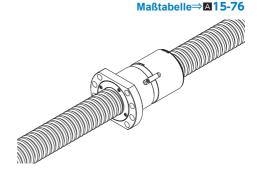

Abb. 3 Vergleichsmessung des Drehmoments

Typenübersicht

[Typ mit Vorspannung]


Typ SBN-V

Durch die Kugelumlenkung werden die Kugeln tangential zur Bewegungsrichtung aufgefangen. Zusätzlich wurden die Umlenkeinheit verstärkt und der DN-Wert auf 160.000 angehoben (kleiner Typ: 130.000).

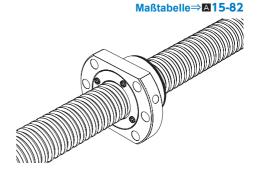

Typ SBK

Da die Vorspannung durch Steigungsversatz erzeugt wird, wobei zwei Laufrillenreihen der Kugelgewindemutter versetzt werden, ist eine kompakte Ausführung möglich.

Typ SDAN-V

Die Vorspannung erfolgt durch die Kombination zweier Kugelgewindetriebsmuttern mit einem Distanzring. Die Mutternabmessungen sind konform zum ISO Standard (ISO 3408). Dieser Typ hat eine höhere axiale Steifigkeit als der Typ.

Auswahlkriterien

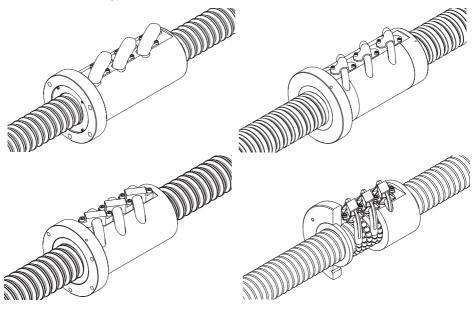

Vorteile der Caged Ball Technology

[Mit Vorspannung/ohne Vorspannung]

Typ SDA-V

Ein Kugelgewindetrieb mit neu entwickelten Zirkulationskomponenten für eine ideale Zirkulationsstruktur der Kugeln. (Max. DN-Wert: 160.000).

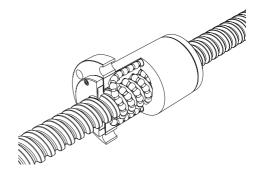
Die Abmessungen der Mutter entsprechen ISO 3408-2. Zudem konnte dank der neu entwickelten Dünnfilmdichtung die Länge der Mutter reduziert und so ein kompakteres Design der Komponente erreicht werden.



[Ohne Vorspannung]

Typen HBN-V/HBN-K/HBN-KA/HBN

Maßtabelle⇒A15-224


Für hohe Belastungen optimiert, erreicht dieser Kugelgewindetrieb eine mehr als doppelt so hohe Nennlast wie konventionelle Typen.

Typ SBKH

Der Typ SBKH kann bei hoher axialer Belastung hohe Verfahrgeschwindigkeiten erreichen (max. 92 m/min).

Maßtabelle⇒A15-234

