Berechnung der einwirkenden Belastung

Linearführungen können aus allen Richtungen Belastungen und Momente resultierend aus der Einbaulage der Führungen, dem Antrieb, der Beschleunigung, den Bearbeitungskräften sowie dem Massenschwerpunkt des zu bewegenden Gegenstandes u.a. aufnehmen.

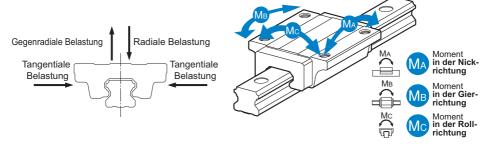


Abb. 1 Richtungen der auf die Linearführung einwirkenden Belastungen

Berechnung einer einwirkenden Belastung

[Einachsige Anwendung]

Momentäguivalenz

Linearführungen werden z.T. wegen beengter Einbauverhältnisse mit nur einem Führungswagen bzw. mit zwei zusammengesetzten Wagen eingesetzt. In diesen Fällen werden die äußeren Kugeln an den Wagenenden größerem Verschleiß ausgesetzt als die anderen Kugeln (siehe Abb. 2). Hier kann der Verschleiss durch Abblättern während des Betriebs an den am größten belasteten Stellen zunehmen und die berechnete Lebensdauer dementsprechend abnehmen. Daher müssen bei diesen Betriebsbedingungen die Momente mit den entsprechenden Äquivalenzfaktoren multipliziert werden (siehe Tab. 1 bis Tab. 6 **A1-43**).

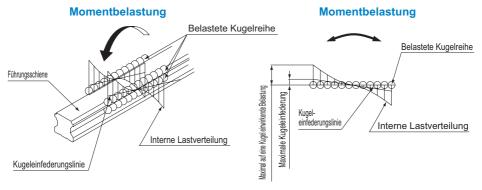


Abb. 2 Kugelbelastung bei einwirkendem Moment

Mit der folgenden Formel wird die äquivalente Belastung ermittelt, wenn ein Moment auf die Linearführung wirkt.

$P = K \cdot M$

P : Äquivalente Belastung pro Linearführung (N)

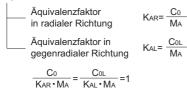
K : Äquivalenzfaktor

M: Wirkendes Moment (Nmm)

Berechnung der einwirkenden Belastung

Äquivalenzfaktor

Einige Linearführungen haben unterschiedliche Tragzahlen pro Belastungsrichtung. In diesem Fall sind für gleiche Momente in M_{A^-} und M_{C^-} Richtung die Äquivalenzfaktoren für die Radial- bzw. Gegenradialrichtung unterschiedlich.


■Äquivalenzfaktoren für Moment MA

Äquivalente Belastung in gegenradialer Richtung

Abb. 3 Äquivalenzfaktoren für Moment MA

Äquivalenzfaktoren für das Moment MA.

■Äquivalenzfaktoren für Moment M_B

Abb. 4 Äquivalenzfaktoren für Moment M_B

Äquivalenzfaktoren für das Moment MB.

■Äquivalenzfaktoren für Moment Mc

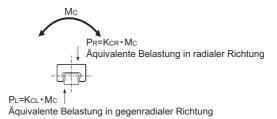
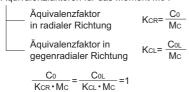



Abb. 5 Äquivalenzfaktoren für Moment Mc

Äquivalenzfaktoren für das Moment Mc .

C_0	: Statische Tragzahl (radiale Richtung)	
C_{OL}	: Statische Tragzahl (gegenradiale Richtung)	(N)
C_{OT}	: Statische Tragzahl (tangentiale Richtung)	(N)
P_{R}	: Berechnete Belastung (radiale Richtung)	(N)
P_{L}	: Berechnete Belastung (gegenradiale Richtung)	(N)
P_T	: Berechnete Belastung (tangentiale Richtung)	(N)

Berechnung der einwirkenden Belastung

Berechnungsbeispiel

Wenn ein Führungswagen verwendet wird

Baureihe: SSR20XV1

Erdbeschleunigung g=9,8 (m/s²) Gewicht m=10 (kg)

ℓ₁=200 (mm) ℓ₂=100 (mm)

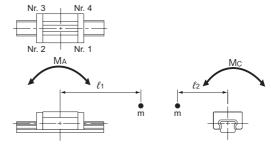
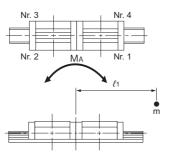


Abb. 6 Wenn ein Führungswagen verwendet wird


- Nr. 1 $P_1 = mg + K_{AR1} \cdot mg \cdot \ell_1 + K_{CR} \cdot mg \cdot \ell_2 = 98 + 0,275 \times 98 \times 200 + 0,129 \times 98 \times 100 = 6752$ (N)
- Nr. 2 $P_2=mg-K_{AL1} \cdot mg \cdot \ell_1 + K_{CR} \cdot mg \cdot \ell_2 = 98-0,137 \times 98 \times 200+0,129 \times 98 \times 100 = -1323$ (N)
- Nr. 3 $P_3 = mg K_{AL1} \cdot mg \cdot \ell_1 K_{CL} \cdot mg \cdot \ell_2 = 98 0,137 \times 98 \times 200 0,0644 \times 98 \times 100 = -3218$ (N)
- Nr. 4 P_4 =mg+ K_{AR1} •mg• ℓ_1 - K_{CL} •mg• ℓ_2 =98+0,275×98×200-0,0644×98×100=4857 (N)

Wenn zwei Führungswagen eng zusammengesetzt verwendet werden

Baureihe/-größe: SVS25R2

Erdbeschleunigung g=9,8 (m/s²) Gewicht m=5 (kg)

 ℓ_1 =200 (mm) ℓ_2 =150 (mm)

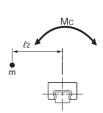


Abb. 7 Wenn zwei Führungswagen eng zusammengesetzt verwendet werden

No. 1
$$P_1 = \frac{mg}{2} + K_{AR2} \cdot mg \cdot \ell_1 + K_{CR} \cdot \frac{mg \cdot \ell_2}{2} = \frac{49}{2} + 0.0217 \times 49 \times 200 + 0.0995 \times \frac{49 \times 150}{2} = 602.9 \text{ (N)}$$

No. 2
$$P_2 = \frac{mg}{2} - K_{AL2} \cdot mg \cdot \ell_1 + K_{CR} \cdot \frac{mg \cdot \ell_2}{2} = \frac{49}{2} - 0,0182 \times 49 \times 200 + 0,0995 \times \frac{49 \times 150}{2} = 211,9 \text{ (N)}$$

No. 3 P₃=
$$\frac{mg}{2}$$
 -K_{AL2}·mg· ℓ 1-K_{CL}· $\frac{mg\cdot\ell_2}{2}$ = $\frac{49}{2}$ -0,0182×49×200-0,0835× $\frac{49\times150}{2}$ =-460,7 (N)

No. 4 P₄=
$$\frac{mg}{2}$$
 +K_{AR2}·mg· ℓ_1 -K_{CL}· $\frac{mg\cdot\ell_2}{2}$ = $\frac{49}{2}$ +0,0217×49×200-0,0835× $\frac{49\times150}{2}$ =-69,7 (N)

Hinweis 1:Da eine Linearführung in Vertikalmontage nur eine Momentbelastung aufnimmt, ist das Einwirken einer Belastungskraft (mg) nicht erforderlich.

[Zweiachsige Anwendung]

• Festlegung der Einsatzbedingungen

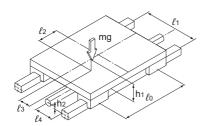
Die Festlegung der Einsatzbedingungen ist für die Bestimmung der nominellen Lebensdauer und der Belastung eines Linearführungssystems notwendig. Folgende Bedingungen werden dabei berücksichtigt:

- (1) Gewicht: m (kg)
- (2) Richtung der Gewichtskraft:
- (3) Lage des Arbeitspunkts (z.B. Schwerpunkt): ℓ_2 , ℓ_3 , h_1 (mm)
- (4) Antriebsposition: ℓ_4 , h_2 (mm)
- (5) Anordnung des Linearführungssystems: ℓ₀, ℓ₁ (mm)(Anzahl von Einheiten und Achsen)
- (6) Geschwindigkeitsdiagramm

Geschwindigkeit: V (mm/s)

Zeitkonstante: tn (s)

Beschleunigung: α_n (mm/s²)


$$(\alpha_n = \frac{V}{t_n})$$

(7) Arbeitszyklus

Anzahl der Doppelhübe pro Minute: N₁ (min-1)

- (8) Hublänge: ℓ_s (mm)
- (9) Durchschnittsgeschwindigkeit: V_m (m/s)
- (10) Erforderliche nominelle Lebensdauer in Stunden: L_{10h}

Erdbeschleunigung g=9,8 (m/s2)

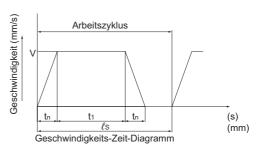
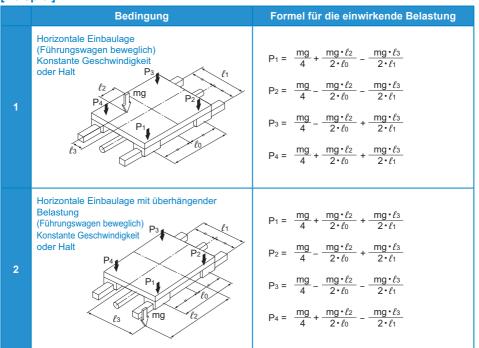


Abb. 8 Bedingung


Berechnung der einwirkenden Belastung

Formel für die einwirkende Belastung

Die auf ein Linearführungssystem einwirkenden Belastungen sind abhängig von der Schwerpunktlage des Objektes, der Antriebsposition, der Beschleunigung und Verzögerung beim Anfahren und Halten, den Bearbeitungskräften sowie anderen äußeren Kräften. Diese Parameter müssen alle ausreichend bei der Auslegung eines Linearführungssystems berücksichtigt werden. Bei den folgenden zehn Beispielen werden die Belastungen für Linearführungssysteme bei unterschiedlichen Einsatzbedingungen bestimmt.

a iLD o	anigarigori bootiiriirte	
m	: Gewicht	(kg)
ℓ_n	: Verfahrweg	(mm)
F_n	: Äußere Kraft	(N)
P_n	: Einwirkende Belastung (radial/gegenradiale Richtung)	(N)
P_{nT}	: Einwirkende Belastung (tangentiale Richtungen)	(N)
g	: Erdbeschleunigung	(m/s ²)
	$(g = 9.8 \text{m/s}^2)$	
V	: Geschwindigkeit	(m/s)
t_{n}	: Zeitkonstante	(s)
α_{n}	: Beschleunigung	(m/s ²)
	V	
	$(\alpha_n = \frac{\mathbf{v}}{\mathbf{f}_n})$	

[Beispiel]

	Bedingung	Formel für die einwirkende Belastung
	Vertikale Einbaulage Konstante Geschwindigkeit oder Halt	
3	Z.B.: Vertikale Achse eines Industrieroboters, Lackierautomaten, Hebers	$P_{1} = P_{4} = -\frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2} = P_{3} = \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{1T} = P_{4T} = \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{0}}$ $P_{2T} = P_{3T} = -\frac{mg \cdot \ell_{3}}{2 \cdot \ell_{0}}$
	Wandmontage Konstante Geschwindigkeit oder Halt	
4	ℓ_2 ℓ_2 ℓ_3 ℓ_2 ℓ_3 ℓ_4 ℓ_4 ℓ_5 ℓ_5 ℓ_7 ℓ_7 ℓ_8	$P_{1} = P_{2} = -\frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = P_{4} = \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{1T} = P_{4T} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2T} = P_{3T} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$
	z.B.: Fahrachse eines Ladeportals	

Berechnung der einwirkenden Belastung

	Bedingung	Formel für die einwirkende Belastung
5	Führungsschienen beweglich Horizontale Einbaulage z.B.: XY-Tisch Stapler	P1 bis P4 (max) = $\frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$ P1 bis P4 (min) = $\frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$
6	Horizontal-Schrägmontage http://www.mg p1 p2 p2 t2 t2 t3 z.B.: NC-Drehmaschine Schlitten	$P_{1} = + \frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{1T} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2} = + \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{2T} = \frac{mg \cdot \sin\theta}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{3} = + \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $+ \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{3T} = \frac{mg \cdot \sin\theta}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{4} = + \frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $+ \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{4T} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$

Bedingung Formel für die einwirkende Belastung Vertikal-Schrägmontage $P_1 = + \frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ $-\frac{\text{mg} \boldsymbol{\cdot} \text{cos} \theta \boldsymbol{\cdot} \ell_3}{2 \boldsymbol{\cdot} \ell_1} + \frac{\text{mg} \boldsymbol{\cdot} \text{sin} \theta \boldsymbol{\cdot} \text{h1}}{2 \boldsymbol{\cdot} \ell_0}$ $P_{1T} = + \frac{mg \cdot \sin\theta \cdot \ell_3}{2 \cdot \ell_0}$ $P_2 = + \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ $-\frac{\text{mg}\cdot\cos\theta\cdot\ell_3}{2}$ $-\frac{\text{mg}\cdot\sin\theta\cdot\text{h}_1}{2}$ 2∙ℓ1 $P_{2T} = -\frac{mg \cdot \sin\theta \cdot \ell_3}{2 \cdot \ell_0}$ $P_3 = + \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ $+ \frac{mg \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1} - \frac{mg \cdot \sin\theta \cdot h_1}{2 \cdot \ell_0}$ $P_{3T} = -\frac{mg \cdot \sin\theta \cdot \ell_3}{2 \cdot \ell_0}$ $P_4 = + \frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \ell_2}{2 \cdot \ell_0}$ z.B.: NC-Drehmaschine $+ \frac{\text{mg} \cdot \cos\theta \cdot \ell_3}{2 \cdot \ell_1} + \frac{\text{mg} \cdot \sin\theta \cdot h_1}{2 \cdot \ell_0}$ Werkzeughalter $P_{4T} = + \frac{mg \cdot \sin\theta \cdot \ell_3}{2}$ Horizontale Einbaulage Bei der Beschleunigung mit Trägheitskräften $P_1 = P_4 = \frac{mg}{4} - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$ $P_2 = P_3 = \frac{mg}{4} + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$ $P_{1T} = P_{4T} = \frac{m \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0}$ $P_{2T} = P_{3T} = -\frac{m \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0}$ Bei gleichförmiger Bewegung P_1 bis $P_4 = \frac{mg}{4}$ 8 Bei der Verzögerung $P_1 = P_4 = \frac{mg}{4} + \frac{m \cdot \alpha \cdot 12}{2 \cdot \ell_0}$ Seschwindigkeit V (m/s) $\alpha_n = \frac{V}{t_n}$ $P_2 = P_3 = \frac{mg}{4} - \frac{m \cdot \alpha \cdot \alpha \cdot \ell_2}{2 \cdot \ell_0}$ $P_{1T} = P_{4T} = - \frac{m \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0}$ t2 <u>t₃</u> Zeit (s) $P_{2T} = P_{3T} = \frac{m \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0}$ Geschwindigkeits-Zeit-Diagramm z.B.: Transportgestell

Berechnung der einwirkenden Belastung

Bedingung Formel für die einwirkende Belastung Vertikale Einbaulage mit Trägheitskräften Bei der Beschleunigung $P_1 = P_4 = -\frac{m(g+\alpha_1)\ell_2}{2 \cdot \ell_0}$ $P_2 = P_3 = \frac{m(g+\alpha_1)\ell_2}{2 \cdot \ell_0}$ $P_{1T} = P_{4T} = \frac{m(g+\alpha_1)\ell_3}{2 \cdot \ell_0}$ $P_{2T} = P_{3T} = -\frac{m(g+\alpha_1)\ell_3}{2 \cdot \ell_0}$ Bei konstanter Bewegung $P_1 = P_4 = -\frac{mg \cdot \ell_2}{2 \cdot \ell_0}$ $\alpha_n = \frac{V}{t_n}$ 9 Geschwindigkeit V (m/s) $P_{2T} = P_{3T} = -\frac{mg \cdot \ell_3}{2 \cdot \ell_0}$ Bei der Verzögerung t₂ t₃ Zeit (s) Geschwindigkeits-Zeit-Diagramm $P_1 = P_4 = -\frac{m(g - \alpha 3)\ell_2}{2 \cdot \ell_0}$ z.B.: Transportlift $P_2 = P_3 = \frac{m(g - \alpha_3)\ell_2}{2 \cdot \ell_0}$ $P_{1T} = P_{4T} = \frac{m(g - \alpha 3)\ell 3}{2 \cdot \ell_0}$ $P_{2T} = P_{3T} = -\frac{m(g - \alpha 3) \ell 3}{2}$ Horizontale Einbaulage Bei Bearbeitungskraft F1 $P_1 = P_4 = -\frac{F_1 \cdot \ell_5}{2 \cdot \ell_0}$ mit Bearbeitungskräften $P_2 = P_3 = \frac{F_1 \cdot \ell_5}{2 \cdot \ell_0}$ $P_{1T} = P_{4T} = \frac{F_1 \cdot \ell_4}{2 \cdot \ell_0}$ $P_{2T} = P_{3T} = -\frac{F_1 \cdot \ell_4}{2 \cdot \ell_2}$ Bei Bearbeitungskraft F2 $P_1 = P_4 = \frac{F_2}{4} + \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$ 10 $P_2 = P_3 = \frac{F_2}{4} - \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$ Bei Bearbeitungskraft F3 z.B.: Bohranlage, Fräsmaschine, Drehmaschine. Bearbei- $$\begin{split} P_3 &= P_4 \; = \; - \; \frac{F_3 \! \cdot \! \ell_3}{2 \! \cdot \! \ell_1} \\ P_{1T} &= P_{4T} = \; - \; \frac{F_3}{4} \; - \; \frac{F_3 \! \cdot \! \ell_2}{2 \! \cdot \! \ell_0} \end{split}$$ tungszentrum und andere Bearbeitungsmaschinen $P_{2T} = P_{3T} = -\frac{F_3}{4} + \frac{F_3 \cdot \ell_2}{2 \cdot \ell_0}$