Calculating the Static Safety Factor

To calculate a load applied to the LM Guide, the average load required for calculating the service life and the maximum load needed for calculating the static safety factor must be obtained first. In a system subject to frequent starts and stops, placed under cutting forces or under a large moment caused by an overhang load, an excessively large load may apply to the LM Guide. When selecting a model number, make sure that the desired model is capable of receiving the required maximum load (whether stationary or in motion). Table 9 shows reference values for the static safety factor.

<table>
<thead>
<tr>
<th>Machine using the LM Guide</th>
<th>Load conditions</th>
<th>Lower limit of f_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>General industrial machinery</td>
<td>Without vibration or impact</td>
<td>1.0 to 3.5</td>
</tr>
<tr>
<td></td>
<td>With vibration or impact</td>
<td>2.0 to 5.0</td>
</tr>
<tr>
<td>Machine tool</td>
<td>Without vibration or impact</td>
<td>1.0 to 4.0</td>
</tr>
<tr>
<td></td>
<td>With vibration or impact</td>
<td>2.5 to 7.0</td>
</tr>
</tbody>
</table>

When the radial load is large

$$\frac{f_H \cdot f_T \cdot f_C \cdot C_0}{P_R} \geq f_s$$

When the reverse radial load is large

$$\frac{f_H \cdot f_T \cdot f_C \cdot C_{OL}}{P_L} \geq f_s$$

When the lateral loads are large

$$\frac{f_H \cdot f_T \cdot f_C \cdot C_{OT}}{P_T} \geq f_s$$

f_s: Static safety factor
C_0: Basic static load rating (radial direction) (N)
C_{OL}: Basic static load rating (reverse-radial direction) (N)
C_{OT}: Basic static load rating (lateral direction) (N)
P_R: Calculated load (radial direction) (N)
P_L: Calculated load (reverse-radial direction) (N)
P_T: Calculated load (lateral direction) (N)
f_H: Hardness factor (see Fig.8 on A1-66)
f_T: Temperature factor (see Fig.9 on A1-66)
f_C: Contact factor (see Table10 on A1-66)