Selection Criteria

Calculating the Average Load

Calculating the Average Load

In cases where the load applied to each LM block fluctuates under different conditions, such as an industrial robot advancing while holding a workpiece with its arm then retreating with its arm empty, or a machine tool handling various workpieces, it is necessary to calculate the service life of the LM block while taking into account such fluctuating loading conditions.

The average load (P_m) is the load under which the service life of the LM Guide is equivalent to that under varying loads applied to the LM blocks.

$$\mathbf{P}_{m} = \sqrt[i]{\frac{1}{L} \cdot \sum_{n=1}^{n} (\mathbf{P}_{n}^{i} \cdot \mathbf{L}_{n})}$$

: Average Load1 (N)

: Varying load (N)

: Total travel distance (mm)

: Distance traveled under load Pn (mm)

: Constant determined by rolling element

Note: This equation applies when the rolling elements are balls. (1) With stepwise load fluctuation

LM Guide Using Balls (i=3)

$$P_{m} = \sqrt[3]{\frac{1}{L} (P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} \cdots + P_{n}^{3} \cdot L_{n})}$$
(1)

P_m : Average load (N)

: Varying load (N)

: Total travel distance (mm) : Distance traveled under Pn (mm)

LM Guide Using Rollers
$$(i = \frac{10}{3})$$

 $\mathbf{P}_{m} = \sqrt[10]{\frac{10}{3}} \frac{1}{\mathbf{L}} (\mathbf{P}_{1}^{\frac{10}{3}} \cdot \mathbf{L}_{1} + \mathbf{P}_{2}^{\frac{10}{3}} \cdot \mathbf{L}_{2} + \cdots + \mathbf{P}_{n}^{\frac{10}{3}} \cdot \mathbf{L}_{n})$ (2)

 P_m : Average Load (N)

P. : Varying load (N)

: Total travel distance (mm)

· Distance traveled under P_o (mm)

Total travel distance (L)

(2) With monotone load fluctuation

 $P_{m} \doteq \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \dots (3)$

P_{min}: Minimum load

(N) (N)

: Maximum load

Pmax Load (P) Pmin Total travel distance (L)

(3) With sinusoidal load fluctuation

(a)
$$P_m = 0.65P_{max} \cdots (4)$$

(b)
$$P_m = 0.75 P_{max} \cdots (5)$$

