Calculating the Applied Load

The LM Guide is capable of receiving loads and moments in all directions that are generated due to the mounting orientation, alignment, gravity center position of a traveling object, thrust position and cutting resistance.

Fig. 1 Directions of the Loads Applied on the LM Guide

Calculating an Applied Load

[Single-Axis Use]

- Moment Equivalence

When the installation space for the LM Guide is limited, you may have to use only one LM block, or double LM blocks closely contacting with each other. In such a setting, the load distribution is not uniform and, as a result, an excessive load is applied in localized areas (i.e., both ends) as shown in Fig.2. Continued use under such conditions may result in flaking in those areas, consequently shortening the service life. In such a case, calculate the actual load by multiplying the moment value by any one of the equivalent-moment factors specified in Table1 to Table6 \mathbf{A} 1-43.

Fig. 2 Ball Load when a Moment is Applied
An equivalent-load equation applicable when a moment acts on an LM Guide is shown below.

$$
\mathbf{P}=\mathbf{K} \cdot \mathbf{M}
$$

K : Equivalent moment factor
M : Applied moment (N•mm)

B1-56

- Equivalent Factor

Since the rated load is equivalent to the permissible moment, the equivalent factor to be multiplied when equalizing the $\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{B}}$ and M_{c} moments to the applied load per block is obtained by dividing the rated loads in the corresponding directions.
With those models other than 4-way equal load types, however, the load ratings in the 4 directions differ from each other. Therefore, the equivalent factor values for the M_{A} and M_{c} moments also differ depending on whether the direction is radial or reverse radial.

■Equivalent Factors for the M_{A} Moment

Fig. 3 Equivalent Factors for the M_{A} Moment

Equivalent factors for the MA Moment
__ Equivalent factor
in the radial direction
$K_{A R}=\frac{C_{0}}{M_{A}}$
Equivalent factor in the reverse radial direction $\mathrm{K}_{\mathrm{AL}}=\frac{\mathrm{C}_{\mathrm{OL}}}{\mathrm{MA}_{\mathrm{A}}}$

$$
\frac{C_{0}}{K_{A R} \cdot M_{A}}=\frac{C_{0 L}}{K_{A L} \cdot M_{A}}=1
$$

■Equivalent Factors for the M_{B} Moment

Fig. 4 Equivalent Factors for the M_{B} Moment

Equivalent factors for the Mв Moment

$\begin{aligned} & \text { Equivalent factor in } \\ & \text { the lateral directions }\end{aligned} \mathrm{K}_{B}=\frac{\mathrm{C}_{0}{ }_{\mathrm{M}}}{\mathrm{M}_{B}}$
$\frac{\mathrm{C}_{0} T}{\mathrm{~K}_{\mathrm{B}} \cdot \mathrm{MB}_{\mathrm{B}}}=1$

Equivalent Factors for the $\mathbf{M c}_{\mathrm{c}}$ Moment

Fig. 5 Equivalent Factors for the M_{c} Moment

Equivalent factors for the Mc Moment

Equivalent factor in the radial direction

Equivalent factor in the reverse radial direction
$\frac{\mathrm{C}_{0}}{\mathrm{KCR} \cdot \mathrm{Mc}}=\frac{\mathrm{C}_{0}}{\mathrm{KcL} \cdot \mathrm{Mc}}=1$
$\mathrm{C}_{0} \quad$: Basic static load rating (radial direction)
C_{0} : Basic static load rating (reverse radial direction) (N)
$\mathrm{C}_{\text {от }} \quad$: Basic static load rating (lateral direction) (N)
P_{R} : Calculated load (radial direction)
$P_{\mathrm{L}} \quad$: Calculated load (reverse radial direction)
P_{T} : Calculated load (lateral direction)
(N)

B1-58

Example of calculation

When one LM block is used

Model No.: SSR20XV1
Gravitational acceleration $\mathrm{g}=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ Mass m=10 (kg) $\ell_{1}=200$ (mm) $\ell_{2}=100(\mathrm{~mm})$

Fig. 6 When One LM Block is Used
No. $1 \mathrm{P}_{1}=\mathrm{mg}+\mathrm{K}_{\text {AR1 }} \cdot \mathrm{mg} \cdot \ell_{1}+\mathrm{K}_{\mathrm{CR}} \cdot \mathrm{mg} \cdot \ell_{2}=98+0.275 \times 98 \times 200+0.129 \times 98 \times 100=6752(\mathrm{~N})$
No. $2 \mathrm{P}_{2}=\mathrm{mg}-\mathrm{K}_{\mathrm{AL} 1} \cdot \mathrm{mg} \cdot \ell_{1}+\mathrm{K}_{\mathrm{CR}} \cdot \mathrm{mg} \cdot \ell_{2}=98-0.137 \times 98 \times 200+0.129 \times 98 \times 100=-1323(\mathrm{~N})$
No. $3 \mathrm{P}_{3}=\mathrm{mg}-\mathrm{K}_{\mathrm{AL} 1} \cdot \mathrm{mg} \cdot \ell_{1}-\mathrm{K}_{\mathrm{cl}} \cdot \mathrm{mg} \cdot \ell_{2}=98-0.137 \times 98 \times 200-0.0644 \times 98 \times 100=-3218(\mathrm{~N})$
No. $4 \mathrm{P}_{4}=\mathrm{mg}+\mathrm{K}_{\text {AR1 }} \cdot \mathrm{mg} \cdot \ell_{1}-\mathrm{K}_{\mathrm{cL}} \cdot \mathrm{mg} \cdot \ell_{2}=98+0.275 \times 98 \times 200-0.0644 \times 98 \times 100=4857(\mathrm{~N})$
When two LM blocks are used in close contact with each other
Model No.: SVS25R2
Gravitational acceleration $\mathrm{g}=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
Mass m=5 (kg)
$\ell_{1}=200$ (mm)
$\ell_{2}=150$ (mm)

Fig. 7 When Two LM Blocks are Used in Close Contact with Each Other
No. $1 \quad P_{1}=\frac{\mathrm{mg}}{2}+\mathrm{K}_{\text {AR } 2} \cdot \mathrm{mg} \cdot \ell_{1}+\mathrm{K}_{\mathrm{CR}} \cdot \frac{\mathrm{mg} \cdot \ell_{2}}{2}=\frac{49}{2}+0.0217 \times 49 \times 200+0.0995 \times \frac{49 \times 150}{2}=602.9(\mathrm{~N})$
No. $2 \mathrm{P}_{2}=\frac{\mathrm{mg}}{2}-\mathrm{KALL}^{2} \cdot \mathrm{mg} \cdot \ell_{1}+\mathrm{KCR}_{\mathrm{CR}} \cdot \frac{\mathrm{mg} \cdot \ell_{2}}{2}=\frac{49}{2}-0.0182 \times 49 \times 200+0.0995 \times \frac{49 \times 150}{2}=211.9(\mathrm{~N})$
No. $3 P_{3}=\frac{\mathrm{mg}}{2}-\mathrm{KALL}_{2} \cdot \mathrm{mg} \cdot \ell_{1}-\mathrm{KcL} \cdot \frac{\mathrm{mg} \cdot \ell_{2}}{2}=\frac{49}{2}-0.0182 \times 49 \times 200-0.0835 \times \frac{49 \times 150}{2}=-460.7(\mathrm{~N})$
No. $4 P_{4}=\frac{\mathrm{mg}}{2}+\mathrm{K}_{\text {AR } 2} \cdot \mathrm{mg} \cdot \ell_{1}-\mathrm{KcL}^{2} \cdot \frac{\mathrm{mg} \cdot \ell_{2}}{2}=\frac{49}{2}+0.0217 \times 49 \times 200-0.0835 \times \frac{49 \times 150}{2}=-69.7(\mathrm{~N})$
Note1) Since an LM Guide used in vertical installation receives only a moment load, there is no need to apply a load force (mg).

[Double-axis Use]

- Setting Conditions

Set the conditions needed to calculate the LM system's applied load and service life in hours.
The conditions consist of the following items.
(1) Mass: m (kg)
(2) Direction of the working load
(3) Position of the working point (e.g., center of gravity): $\ell_{2}, \ell_{3}, h_{1}(\mathrm{~mm})$
(4) Thrust position: $\ell_{4}, \mathrm{~h}_{2}(\mathrm{~mm})$
(5) LM system arrangement: $\ell_{0}, \ell_{1}(\mathrm{~mm})$
(No. of units and axes)
(6) Velocity diagram

Speed: V (mm/s)
Time constant: t_{n} (s)
Acceleration: $\alpha_{n}\left(\mathrm{~mm} / \mathrm{s}^{2}\right)$

$$
\left(\alpha_{n}=\frac{V}{t_{n}}\right)
$$

(7) Duty cycle

Number of reciprocations per minute: $\mathrm{N}_{1}\left(\mathrm{~min}^{-1}\right)$
(8) Stroke length: $\ell_{s}(\mathrm{~mm})$
(9) Average speed: $\mathrm{V}_{\mathrm{m}}(\mathrm{m} / \mathrm{s})$
(10) Required service life in hours: $L_{n}(h)$

Gravitational acceleration $\mathrm{g}=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$

Fig. 8 Condition

B1-60

- Applied Load Equation

The load applied to the LM Guide varies with the external force, such as the position of the gravity center of an object, thrust position, inertia generated from acceleration/deceleration during start or stop, and cutting force.
In selecting an LM Guide, it is necessary to obtain the value of the applied load while taking into account these conditions.

Calculate the load applied to the LM Guide in each of the examples 1 to 10 shown below.
m : Mass
(kg)
ℓ_{n} : Distance
F_{n} : External force
(mm)
$P_{n} \quad$: Applied load (radial/reverse radial direction)
(N)
(N)
$P_{\text {пт }}$: Applied load (lateral directions)
(N)
g : Gravitational acceleration
$\left(\mathrm{m} / \mathrm{s}^{2}\right)$ ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
V : Speed
(m/s)
(s)
t_{n} : Time constant
$\left(\mathrm{m} / \mathrm{s}^{2}\right)$

$$
\left(\alpha_{n}=\frac{V}{t_{n}}\right)
$$

[Example]

Horizontal mount
(with the block traveling)
Uniform motion or dwell

Note) Load is positive in the direction of the arrow.

	Condition	Applied Load Equation
3	Vertical mount Uniform motion or dwell E.g.: Vertical axis of industrial robot, automatic coating machine, lifter	$\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{4}=-\frac{\mathrm{mg} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2}=\mathrm{P}_{3}=\frac{\mathrm{mg} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{1} \mathrm{~T}=\mathrm{P}_{4 \mathrm{~T}}=\frac{\mathrm{mg} \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2 \mathrm{~T}}=\mathrm{P}_{3 \mathrm{~T}}=-\frac{\mathrm{mg} \cdot \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$
4	Wall mount Uniform motion or dwell E.g.: Travel axis of cross-rail loader	$\begin{aligned} & P_{1}=P_{2}=-\frac{m g \cdot \ell_{3}}{2 \cdot \ell_{1}} \\ & P_{3}=P_{4}=\frac{\mathrm{mg} \cdot \ell_{3}}{2 \cdot \ell_{1}} \\ & P_{1 T}=P_{4 T}=\frac{m g}{4}+\frac{m g \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{2 T}=P_{3 T}=\frac{m g}{4}-\frac{m g \cdot \ell_{2}}{2 \cdot \ell_{0}} \end{aligned}$

Note) Load is positive in the direction of the arrow.

	Condition	Applied Load Equation
5	With the LM rails movable Horizontal mount E.g.: XY table sliding fork	$\begin{aligned} & P_{1} \text { to } P_{4}(\max)=\frac{m g}{4}+\frac{m g \cdot \ell_{1}}{2 \cdot \ell_{0}} \\ & P_{1} \text { to } P_{4}(m i n)=\frac{m g}{4}-\frac{m g \cdot \ell_{1}}{2 \cdot \ell_{0}} \end{aligned}$
6	Laterally tilt mount E.g.: NC lathe Carriage	$\begin{aligned} \mathrm{P}_{1}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}+\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & -\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}+\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{1}} \\ \mathrm{P}_{1 \mathrm{~T}}= & \frac{\mathrm{mg} \cdot \sin \theta}{4}+\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{2}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}-\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & -\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}+\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{1}} \\ \mathrm{P}_{2 \mathrm{~T}}= & \frac{\mathrm{mg} \cdot \sin \theta}{4}-\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{3}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}-\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ + & \frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}-\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{1}} \\ \mathrm{P}_{3 \mathrm{~T}}= & \frac{\mathrm{mg} \cdot \sin \theta}{4}-\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{4}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}+\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & +\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}-\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{1}} \\ \mathrm{P}_{4 \mathrm{~T}}= & \frac{\mathrm{mg} \cdot \sin \theta}{4}+\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \end{aligned}$

Note) Load is positive in the direction of the arrow.

Condition	Applied Load Equation
Longitudinally tilt mount E.g.: NC lathe Tool rest	$\begin{aligned} \mathrm{P}_{1}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}+\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & -\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}+\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{1 \mathrm{~T}}= & +\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{2}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}-\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & -\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}-\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{2 \mathrm{~T}}= & -\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{3}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}-\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & +\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}-\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{3 \mathrm{~T}}= & -\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{4}= & +\frac{\mathrm{mg} \cdot \cos \theta}{4}+\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & +\frac{\mathrm{mg} \cdot \cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}}+\frac{\mathrm{mg} \cdot \sin \theta \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{0}} \\ \mathrm{P}_{4 \mathrm{~T}}= & +\frac{\mathrm{mg} \cdot \sin \theta \cdot \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$
Horizontal mount with inertia	During acceleration $\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{4}=\frac{\mathrm{mg}}{4}-\frac{\mathrm{m} \cdot \alpha 1 \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2}=\mathrm{P}_{3}=\frac{\mathrm{mg}}{4}+\frac{\mathrm{m} \cdot \alpha_{1} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{1} \mathrm{~T}=\mathrm{P}_{4} \mathrm{~T}=\frac{\mathrm{m} \cdot \alpha 1 \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2} \mathrm{~T}=\mathrm{P}_{3} \mathrm{~T}=-\frac{\mathrm{m} \cdot \alpha_{1} \cdot \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$ During uniform motion $P_{1} \text { to } P_{4}=\frac{m g}{4}$ During deceleration $\begin{aligned} & P_{1}=P_{4}=\frac{m g}{4}+\frac{m \cdot \alpha_{3} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{2}=P_{3}=\frac{m g}{4}-\frac{m \cdot \alpha_{3} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{1 T}=P_{4} T=-\frac{m \cdot \alpha_{3} \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ & P_{2 T}=P_{3} T=\frac{m \cdot \alpha_{3} \cdot \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$

Note) Load is positive in the direction of the arrow.

	Condition	Applied Load Equation
9	Vertical mount with inertia E.g.: Conveyance lift	During acceleration $\begin{aligned} & P_{1}=P_{4}=-\frac{m\left(g+\alpha_{1}\right) \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{2}=P_{3}=\frac{m\left(g+\alpha_{1}\right) \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{1 T}=P_{4 T}=\frac{m\left(g+\alpha_{1}\right) \ell_{3}}{2 \cdot \ell_{0}} \\ & P_{2 T}=P_{3 T}=-\frac{m\left(g+\alpha_{1}\right) \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$ During uniform motion $\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{4}=-\frac{\mathrm{mg} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2}=\mathrm{P}_{3}=\frac{\mathrm{mg} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{1 \uparrow}=\mathrm{P}_{4} \mathrm{~T}=\frac{\mathrm{mg} \cdot \ell_{3}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2} \mathrm{~T}=\mathrm{P}_{3 \mathrm{~T}}=-\frac{\mathrm{mg} \cdot \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$ During deceleration $\begin{aligned} & P_{1}=P_{4}=-\frac{m\left(g-\alpha_{3}\right) \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{2}=P_{3}=\frac{m\left(g-\alpha_{3}\right) \ell_{2}}{2 \cdot \ell_{0}} \\ & P_{1 T}=P_{4 T}=\frac{m\left(g-\alpha_{3}\right) \ell_{3}}{2 \cdot \ell_{0}} \\ & P_{2 T}=P_{3 T}=-\frac{m\left(g-\alpha_{3}\right) \ell_{3}}{2 \cdot \ell_{0}} \end{aligned}$
10	Horizontal mount with external force E.g.: Drill unit, Milling machine, Lathe, Machining center and other cutting machine	Under force F_{1} $\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{4}=-\frac{\mathrm{F}_{1} \cdot \ell_{5}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2}=\mathrm{P}_{3}=\frac{\mathrm{F}_{1} \cdot \ell_{5}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{1 \mathrm{~T}}=\mathrm{P}_{4} \mathrm{~T}=\frac{\mathrm{F}_{1} \cdot \ell_{4}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2 \mathrm{~T}}=\mathrm{P}_{3} \mathrm{~T}=-\frac{\mathrm{F}_{1} \cdot \ell_{4}}{2 \cdot \ell_{0}} \end{aligned}$ Under force F_{2} $\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{4}=\frac{\mathrm{F}_{2}}{4}+\frac{\mathrm{F}_{2} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2}=\mathrm{P}_{3}=\frac{\mathrm{F}_{2}}{4}-\frac{\mathrm{F}_{2} \cdot \ell_{2}}{2 \cdot \ell_{0}} \end{aligned}$ Under force F_{3} $\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{2}=\frac{\mathrm{F}_{3} \cdot \ell_{3}}{2 \cdot \ell_{1}} \\ & \mathrm{P}_{3}=\mathrm{P}_{4}=-\frac{\mathrm{F}_{3} \cdot \ell_{3}}{2 \cdot \ell_{1}} \\ & \mathrm{P}_{1 \mathrm{~T}}=\mathrm{P}_{4 \mathrm{~T}}=-\frac{\mathrm{F}_{3}}{4}-\frac{\mathrm{F}_{3} \cdot \ell_{2}}{2 \cdot \ell_{0}} \\ & \mathrm{P}_{2 \mathrm{~T}}=\mathrm{P}_{3} \mathrm{~T}=-\frac{\mathrm{F}_{3}}{4}+\frac{\mathrm{F}_{3} \cdot \ell_{2}}{2 \cdot \ell_{0}} \end{aligned}$

