Example of Calculating the Nominal Life

[Condition (Horizontal Installation)]	
Assumed model number	$:$ KR 5520 A
LM Guide unit	$\left(C=38100 \mathrm{~N}, \mathrm{C}_{0}=61900 \mathrm{~N}\right)$
Ball Screw unit	$\left(\mathrm{C}_{\mathrm{a}}=3620 \mathrm{~N}, \mathrm{C}_{0 \mathrm{a}}=9290 \mathrm{~N}\right)$
Bearing unit(Fixed Side)	$\left(\mathrm{C}_{\mathrm{a}}=7600 \mathrm{~N}, \mathrm{P}_{0 \mathrm{a}}=3990 \mathrm{~N}\right)$
Mass	$: \mathrm{m}=30 \mathrm{~kg}$
Speed	$: \mathrm{v}=500 \mathrm{~mm} / \mathrm{s}$
Acceleration	$: \alpha=2.4 \mathrm{~m} / \mathrm{s}^{2}$
Stroke	$: \ell_{\mathrm{s}}=1200 \mathrm{~mm}$
Gravitational acceleration	$: \mathrm{g}=9.807 \mathrm{~m} / \mathrm{s}^{2}$
Velocity diagram	$:$ see Fig. 1

[Consideration]

- Studying the LM Guide Unit

-Load Applied to the Inner Block

* Assuming that a single inner block is used, convert applied moments M_{A} and M_{B} into applied load by multiplying them by the moment equivalent factor ($\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}=8.63 \times 10^{-2}$).
* Assuming that a single shaft is used, convert applied moment Mc_{c} into applied load by multiplying it by the moment equivalent factor $\left(\mathrm{K}_{\mathrm{c}}=2.83 \times 10^{-2}\right)$.
- During uniform motion:
$\mathrm{P}_{1}=\mathrm{mg}+\mathrm{K}_{\mathrm{c}} \cdot \mathrm{mg} \times 40=627 \mathrm{~N}$
- During acceleration:
$P_{1 \mathrm{a}}=P_{1}+K_{A} \cdot m \alpha \times 193=1826 \mathrm{~N}$
$P_{\text {атт }}=-\mathrm{K}_{\mathrm{B}} \cdot \mathrm{m} \alpha \times 40=-249 \mathrm{~N}$
- During deceleration:
$P_{1 d}=P_{1}-K_{A} \cdot m \alpha \times 193=-572 \mathrm{~N}$
$\mathrm{P}_{\text {1वт }}=\mathrm{K}_{\mathrm{B}} \cdot \mathrm{m} \alpha \times 40=249 \mathrm{~N}$
* Since the groove under a load is different from the assumed groove, give "0" (zero) to $\mathrm{P}_{1 \text { 1at }}$ and $\mathrm{P}_{1 d}$.

■Combined Radial And Thrust Load

- During uniform motion:
$P_{\text {位 }}=P_{1}=627 \mathrm{~N}$
- During acceleration:
$P_{1 a E}=P_{1 a}+P_{1 a t}=1826 \mathrm{~N}$
- During deceleration:
$P_{\text {1de }}=P_{1 d}+P_{1 d T}=249 \mathrm{~N}$

■Static Safety Factor

$$
f_{s}=\frac{C_{0}}{P_{\max }}=\frac{C_{0}}{P_{1 a E}}=33.9
$$

- Nominal Life

- Average load

$$
P_{\mathrm{m}}=\sqrt[3]{\frac{1}{\ell_{\mathrm{s}}}\left(\mathrm{P}_{1 \mathrm{E}}^{3} \times 1095+\mathrm{P}_{1 \mathrm{aE}}^{3} \times 52.5+\mathrm{P}_{1 \mathrm{dE}}^{3} \times 52.5\right)}=790 \mathrm{~N}
$$

- Nominal life

$$
\begin{align*}
& L_{10 \mathrm{~m}}=\left(\alpha \times \frac{C}{P_{m}}\right)^{3} \times 50=3.25 \times 10^{6} \mathrm{~km} \\
& \alpha=\frac{1}{f_{w}} \tag{1.2}
\end{align*}
$$

f_{w} : Load factor

- Studying the Ball Screw Unit

-Axial load

- During forward uniform motion:

Fa $a_{1}=\mu \cdot \mathrm{mg}+\mathrm{f}=11 \mathrm{~N}$
$\mu \quad$: Friction coefficient(0.005)
f : Rolling resistance of one KR inner block + seal resistance(10.0 N)

- During forward acceleration:
$\mathrm{Fa}_{2}=\mathrm{Fa} \mathrm{a}_{1}+\mathrm{m} \alpha=83 \mathrm{~N}$
- During forward deceleration:
$\mathrm{Fa}_{3}=\mathrm{Fa} \mathrm{a}_{1}-\mathrm{m} \alpha=-61 \mathrm{~N}$
- During uniform backward motion
$\mathrm{Fa}_{4}=-\mathrm{Fa}_{1}=-11 \mathrm{~N}$
- During backward acceleration:
$F a_{5}=F a_{4}-\mathrm{m} \alpha=-83 \mathrm{~N}$
- During backward deceleration:
$\mathrm{Fa}_{6}=\mathrm{Fa}_{4}+\mathrm{m} \alpha=61 \mathrm{~N}$
* Since the groove under a load is different from the assumed groove, give "0" (zero) to $\mathrm{Fa}_{3}, \mathrm{Fa}_{4}$ and Fa_{5}.

■Static Safety Factor

$$
\mathrm{f}_{\mathrm{s}}=\frac{\mathrm{C}_{0 \mathrm{a}}}{\mathrm{Fa}_{\mathrm{max}}}=\frac{\mathrm{C}_{0 \mathrm{a}}}{\mathrm{Fa}_{2}}=111.9
$$

—Buckling Load

$P_{1}=\frac{n \cdot \pi^{2} \cdot E \cdot I}{\ell_{a}{ }^{2}} \times 0.5=11000 N$
P_{1} : Buckling load
ℓ_{a} : Distance between two mounting surfaces (1300 mm)
E : Young's modulus $\left(2.06 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}\right)$
n : Factor for mounting method (fixed-fixed: 4.0, see $\boldsymbol{\boldsymbol { A }} 15-30$)
0.5 : Safety factor

I : Minimum geometrical moment of inertia of the shaft $\left(\mathrm{mm}^{4}\right)$

$$
I=\frac{\pi}{64} \cdot d 1^{4}
$$

d_{1} : Screw-shaft thread minor diameter

■Permissible tensile Compressive Load

$\mathrm{P}_{2}=\delta \cdot \frac{\pi}{4} \cdot \mathrm{~d}_{1}{ }^{2}=35300 \mathrm{~N}$
P_{2} : Permissible tensile compressive load
(N)
$\delta \quad$: Permissible tensile compressive stress
($147 \mathrm{~N} / \mathrm{mm}^{2}$)
d_{1} : Screw-shaft thread minor diameter
Dangerous Speed
$N_{1}=\frac{60 \cdot \lambda^{2}}{2 \pi \cdot \ell_{b}{ }^{2}} \cdot \sqrt{\frac{E \times 10^{3} \cdot I}{\gamma \cdot A}} \times 0.8=1560 \mathrm{~min}^{-1}$
N_{1} : Dangerous speed
$\ell_{b} \quad$: Distance between two mounting surfaces
(1300 mm)
γ : Density
$\left(7.85 \times 10^{-6} \mathrm{~kg} / \mathrm{mm}^{3}\right)$
$\lambda \quad$: Factor according to the mounting method (fixed-supported 3.927, see A15-32)
0.8 : Safety factor

■DN Value

DN=31125($\leqq 50000)$
D : Ball center-to-center diameter (20.75mm)
N : Maximum working rotation speed (1500min ${ }^{-1}$)

■Nominal Life

- Average axial load

$$
\mathrm{Fa}_{\mathrm{m}}=\sqrt[3]{\frac{1}{2 \cdot \ell_{\mathrm{s}}}\left(\mathrm{Fa}_{1}{ }^{3} \times 1095+\mathrm{Fa}_{2}{ }^{3} \times 52.5+\mathrm{Fa}_{6}^{3} \times 52.5\right)}=26.2 \mathrm{~N}
$$

- Nominal life
$\mathrm{L}_{10 \mathrm{~m}}=\left(\frac{\alpha \cdot \mathrm{C}_{\mathrm{a}}}{\mathrm{F}_{\mathrm{am}}}\right)^{3} \cdot \ell=3.05 \times 10^{7} \mathrm{~km}$
$\alpha=\frac{1}{f_{w}}$
f_{w} : Load factor
ℓ : Ball screw lead

- Bearing Unit (Fixed Side)

■Axial Load (Same as the Ball Screw Unit)

$\mathrm{Fa}_{1}=11 \mathrm{~N}$
$\mathrm{Fa}_{2}=83 \mathrm{~N}$
$\mathrm{Fa}_{3}=0 \mathrm{~N}$
$\mathrm{Fa}_{4}=0 \mathrm{~N}$
$F \mathrm{a}_{5}=0 \mathrm{~N}$
$\mathrm{Fa}_{6}=61 \mathrm{~N}$
Static Safety Factor
$f_{s}=\frac{P_{0 \mathrm{a}}}{F_{a_{\max }}}=\frac{P_{0 \mathrm{a}}}{F_{\mathrm{a} 2}}=48.0$

-Nominal Life

- Average axial load

$$
F \mathrm{am}_{\mathrm{m}}=\sqrt[3]{\frac{1}{2 \cdot \ell_{\mathrm{s}}}\left(\mathrm{Fa}_{1}{ }^{3} \times 1095+\mathrm{Fa}_{2}{ }^{3} \times 52.5+\mathrm{Fa}_{6}{ }^{3} \times 52.5\right)}=26.2 \mathrm{~N}
$$

- Nominal life
$\mathrm{L}_{10 \mathrm{~m}}=\left(\alpha \times \frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{F}_{\mathrm{am}}}\right)^{3} \times 10^{6}=1.41 \times 10^{13} \mathrm{rev}$
$\alpha=\frac{1}{f_{w}}$
f_{w} : Load factor
* Convert the above nominal life into the service life in travel distance of the Ball Screw.
$L_{s}=L_{10 m} \cdot l \times 10^{-6}=2.82 \times 10^{8} \mathrm{~km}$

[Result]

The table below shows the result of the examination.

KR5520A	LM guide unit	Ball screw unit	Bearing unit (Fixed side)
Static safety factor	33.9	111.9	48.0
Buckling load(N)	-	11000	-
Permissible tensile compressive load(N)	-	35300	-
Dangerous speed(min ${ }^{-1}$)	-	1560	-
DN Value	-	31125	-
Nominal life(km)	-	1500	2.82×10^{8}
Maximum working rotation speed(min-1)	-10^{6}	-	

[^0][Condition (Vertical Installation)]
Assumed model number
: KR 5520A
LM Guide Unit
($\mathrm{C}=38100 \mathrm{~N}, \mathrm{C}_{0}=61900 \mathrm{~N}$)
Ball Screw Unit
$\left(C_{a}=3620 \mathrm{~N}, \mathrm{C}_{0 \mathrm{a}}=9290 \mathrm{~N}\right)$
Bearing Unit(Fixed Side)
($\mathrm{C}_{\mathrm{a}}=7600 \mathrm{~N}, \mathrm{P}_{0 \mathrm{a}}=3990 \mathrm{~N}$)
Mass
: m = 30 kg
Speed $\quad: \mathrm{v}=500 \mathrm{~mm} / \mathrm{s}$
Acceleration $\quad: \alpha=2.4 \mathrm{~m} / \mathrm{s}^{2}$
Stroke
: $\ell \mathrm{s}=1200 \mathrm{~mm}$
Gravitational acceleration
Velocity diagram
: $\mathrm{g}=9.807 \mathrm{~m} / \mathrm{s}^{2}$
see Fig. 2

Fig. 2 Velocity Diagram

[Consideration]

- Studying the LM Guide Unit

■Load Applied to the Inner Block

* Assuming that a single inner block is used, convert applied moments M_{A} and M_{B} into applied load by multiplying them by the moment equivalent factor ($\mathrm{K}_{\mathrm{A}}=\mathrm{K}_{B}=8.63 \times 10^{-2}$).
- During uniform motion:

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{K}_{\mathrm{A}} \cdot \mathrm{mg} \times 193=4900 \mathrm{~N} \\
& \mathrm{P}_{1 \mathrm{~T}}=\mathrm{K}_{\mathrm{B}} \cdot \mathrm{mg} \times 40=1016 \mathrm{~N}
\end{aligned}
$$

- During acceleration:

$$
\begin{aligned}
& P_{1 \mathrm{a}}=\mathrm{P}_{1}+\mathrm{K}_{\mathrm{A}} \cdot \mathrm{~m} \alpha \times 193=6100 \mathrm{~N} \\
& \mathrm{P}_{\text {1ат }}=\mathrm{P}_{1 \text { iT }}+\mathrm{K}_{\mathrm{B}} \cdot \mathrm{~m} \alpha \times 40=1264 \mathrm{~N}
\end{aligned}
$$

- During deceleration:

$$
\begin{aligned}
& P_{\text {1d }}=P_{1}-K_{A} \cdot m \alpha \times 193=3701 \mathrm{~N} \\
& P_{\text {1dt }}=P_{1 d \mathrm{~d}}-K_{\mathrm{B}} \cdot m \alpha \times 40=767 \mathrm{~N}
\end{aligned}
$$

■Combined Radial And Thrust Load

- During uniform motion:

$$
P_{1 E}=P_{1}+P_{\text {1T }}=5916 \mathrm{~N}
$$

- During acceleration:

$$
P_{1 \mathrm{aE}}=P_{1 \mathrm{a}}+P_{\text {1at }}=7364 \mathrm{~N}
$$

- During deceleration:

$$
P_{1 d E}=P_{1 d}+P_{1 d T}=4468 \mathrm{~N}
$$

■Static Safety Factor

$$
f_{s}=\frac{C_{0}}{P_{\max }}=\frac{C_{0}}{P_{1 a E}}=8.4
$$

-Nominal Life

- Average load

$$
P_{\mathrm{m}}=\sqrt[3]{\frac{1}{\ell_{\mathrm{s}}}\left(\mathrm{P}_{1 \mathrm{E}}^{3} \times 1095+\mathrm{P}_{1 \mathrm{aE}}^{3} \times 52.5+\mathrm{P}_{1 \mathrm{dE}}^{3} \times 52.5\right)}=5947 \mathrm{~N}
$$

- Nominal life
$L_{10 \mathrm{~m}}=\left(\alpha \times \frac{C}{P_{m}}\right)^{3} \times 50=7.61 \times 10^{3} \mathrm{~km}$
$\alpha=\frac{1}{f_{w}}$
f_{w} : Load factor

- Studying the Ball Screw Unit

-Axial Load

- During upward uniform motion:
$F a_{1}=m g+f=304 \mathrm{~N}$
f : Sliding resistance per block (10.0 N)
- During upward acceleration:
$\mathrm{Fa}_{2}=\mathrm{Fa}_{1}+\mathrm{m} \alpha=376 \mathrm{~N}$
- During upward deceleration:

$$
\mathrm{Fa}_{3}=\mathrm{Fa}_{1}-\mathrm{m} \alpha=232 \mathrm{~N}
$$

- During downward uniform motion:

$$
\mathrm{Fa}_{4}=\mathrm{mg}-\mathrm{f}=284 \mathrm{~N}
$$

- During downward acceleration:

$$
\mathrm{Fa}_{5}=\mathrm{Fa}_{4}-\mathrm{m} \alpha=212 \mathrm{~N}
$$

- During downward deceleration:

$$
\mathrm{Fa}_{6}=\mathrm{Fa}_{4}+\mathrm{m} \alpha=356 \mathrm{~N}
$$

■Static Safety Factor

$$
\mathrm{f}_{\mathrm{s}}=\frac{\mathrm{C}_{0 \mathrm{a}}}{\mathrm{~F}_{\max }}=\frac{\mathrm{C}_{0 \mathrm{a}}}{\mathrm{Fa}_{2}}=24.7
$$

■Buckling Load

Same as Horizontal Installation
Permissible Tensile Compressive Load
Same as Horizontal Installation

■Dangerous Speed

Same as Horizontal Installation

■DN Value

Same as Horizontal Installation

-Nominal Life

- Average axial load

$$
\mathrm{F}_{\mathrm{m}}=\sqrt[3]{\frac{1}{2 \cdot \ell_{\mathrm{s}}}\left(\mathrm{Fa}_{1}{ }^{3} \times 1095+\mathrm{Fa}_{2}{ }^{3} \times 52.5+\mathrm{Fa}_{3}{ }^{3} \times 52.5+\mathrm{Fa}_{4}{ }^{3} \times 1095+\mathrm{Fa}_{5}^{3} \times 52.5+\mathrm{Fa}_{6}^{3} \times 52.5\right)}=296 \mathrm{~N}
$$

- Nominal life

$$
\begin{align*}
& \mathrm{L}_{10 \mathrm{~m}}=\left(\alpha \times \frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{am}}}\right)^{3} \times \ell=2.11 \times 10^{4} \mathrm{~km} \\
& \alpha=\frac{1}{\mathrm{f}_{\mathrm{w}}} \tag{1.2}
\end{align*}
$$

- Bearing Unit (Fixed Side)

■Axial Load (Same as the Ball Screw Unit)
$\mathrm{Fa}_{1}=304 \mathrm{~N}$
$\mathrm{Fa}_{2}=376 \mathrm{~N}$
$\mathrm{Fa}_{3}=232 \mathrm{~N}$
$\mathrm{Fa}_{4}=284 \mathrm{~N}$
$\mathrm{Fa}_{5}=212 \mathrm{~N}$
$\mathrm{Fa}_{6}=356 \mathrm{~N}$
Static Safety Factor
$\mathrm{f}_{\mathrm{s}}=\frac{\mathrm{P}_{\mathrm{oa}}}{\mathrm{F}_{\text {max }}}=\frac{\mathrm{P}_{\mathrm{oa}}}{\mathrm{Fa}_{2}}=10.6$

-Nominal Life

- Average axial load

$$
\mathrm{F}_{\mathrm{m}}=\sqrt[3]{\frac{1}{2 \cdot \ell_{\mathrm{s}}}\left(\mathrm{Fa}_{1}{ }^{3} \times 1095+\mathrm{Fa}_{2}{ }^{3} \times 52.5+\mathrm{Fa}_{3}{ }^{3} \times 52.5+\mathrm{Fa}_{4}{ }^{3} \times 1095+\mathrm{Fa}_{5}^{3} \times 52.5+\mathrm{Fa}_{6}{ }^{3} \times 52.5\right)}=296 \mathrm{~N}
$$

- Nominal life

$$
\begin{align*}
& L_{10 m}=\left(\alpha \times \frac{C_{a}}{F_{a m}}\right)^{3} \times \ell=9.80 \times 10^{9} \mathrm{rev} \\
& \alpha=\frac{1}{f_{w}} \\
& f_{w}: \text { Load factor } \tag{1.2}
\end{align*}
$$

* Convert the above nominal life into the service life in travel distance of the Ball Screw.

$$
L_{s}=L_{10 \mathrm{~m}} \cdot \ell \times 10^{-6}=1.95 \times 10^{5} \mathrm{~km}
$$

[Result]
The table below shows the result of the examination.

KR5520A	LM guide unit	Ball screw unit	Bearing unit (Fixed side)
Static safety factor	8.4	24.7	10.6
Buckling load(N)	-	11000	-
Permissible tensile compressive load(N)	-	35300	-
Dangerous speed $\left(\mathrm{min}^{-1}\right)$	-	1560	-
DN Value	-	31125	-
Nominal life(km)	-	2.11×10^{4}	1.95×10^{5}
Maximum working rotation speed $\left(\mathrm{min}^{-1}\right)$	-	-	

Note1) From the static safety coefficient and other values above, it is judged that the assumed model can be used.
Note2) Of the rated lives of the three components, the shortest value (of LM Guide unit) is considered the nominal life of the assumed model KR 5520A.

[^0]: Note1) From the static safety coefficient and other values above, it is judged that the assumed model can be used.
 Note2) Of the rated lives of the three components, the shortest value (of LM Guide unit) is considered the nominal life of the assumed model KR 5520A.

