NEW

4mm(H)x8mm(W) Micro LM Guides

RSR3M/3N
Micro LM Guides RSR3M/3N

- The micro size allows space-saving design.
- Can be used in various fields of industry including micro machines and DNA analyzers.
- The rolling guide structure makes the system suitable for high-speed motion despite the micro size.

Construction

In Micro LM Guides RSR3M/3N, balls roll in two rows of precision-ground raceways on an LN block and an LM rail, and the end plate attached to the LM block causes the trains of balls to circulate.

In a compact structure, the right and left rows of balls under a load contact the raceways at an angle of 45 degrees, allowing the system to be used in any orientation and achieving well-balanced rigidity.

The LM block, LM rail and balls are used martensitic stainless steel to achieve high corrosion resistance.

Features

- **Ultra compact design**
 RSR3M has the smallest cross-sectional dimensions among all LM Guide series systems. The ultra compact size allows space saving and weight saving for any device using the LM Guide and achieves high reliability.

- **Low rolling resistance**
 The unique structure of the ball circulation section allows stable motion at low rolling resistance.

- **Capable of bearing loads in all directions**
 The right and left rows of balls under a load contact the raceways at an angle of 45 degrees, enabling the system to bear loads in all directions.

- **Superb corrosion resistance**
 The LM block, LM rail and balls are used martensitic stainless steel to achieve high corrosion resistance, making the system optimal for use in medical equipment and clean rooms.
Measurements of rolling resistance
The unique structure of the ball circulation section allows stable motion at low rolling resistance.

Fig. 2 Results of measuring rolling resistance

<Test conditions>
Feeding speed: 1mm/s
Applied load: no load (one LM block)
Mounting orientation: horizontally mounted on a surface table
Types

Type RSR3M
Standard type of Micro LM Guide

Type RSR3N
Large load-rating type with the longer-span LM block and more balls than RSR3M.
Calculation of the service life

The nominal life of LM Guides RSR3M/3N can be obtained using the following equation.

$$L = \left(\frac{f_t \cdot f_c \cdot C}{f_w \cdot P_e} \right)^{\frac{3}{5}} \cdot 50$$

- L (nominal life (km))
- f_t (nominal life L indicates the total distance that can be traveled without causing flaking by at least 90% of a group of LM Guides operated under the same conditions.)
- f_c (basic dynamic-load rating (N))
- C (Basic dynamic-load rating C means the load under which the nominal life L is 50km and whose direction and magnitude does not fluctuate when a group of LM Guides operated under the same conditions.)
- f_w (calculated load (N))
- P_e (temperature factor (see general catalog))
- P_t (contact factor (see general catalog))
- P_c (load factor (see general catalog))

Once nominal life L is obtained using this equation, the LM Guide service life can be calculated using the following equation, if the stroke length and the number of reciprocating cycles are constant:

$$L_n = \frac{L \times 10^6}{2 \times \ell_s \times n \times 60}$$

- L_n (service life in hours (h))
- ℓ_s (stroke length (mm))
- n (No. of reciprocating cycles per min (min⁻¹))
Accuracy standards for types RSR3M/3N are given in Table 1, and their LM rail lengths and running parallelisms are indicated in Fig. 5.

Table 1 Accuracy standards for RSR3M/3N

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Accuracy standard</th>
<th>Normal grade</th>
<th>Precision grade or higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item</td>
<td>No symbol</td>
<td>P</td>
</tr>
<tr>
<td>RSR3M</td>
<td>Tolerance of height M</td>
<td>□ □□□</td>
<td>□ □□□</td>
</tr>
<tr>
<td>RSR3N</td>
<td>Difference in height M</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td>RSR3M</td>
<td>Tolerance of width W₂</td>
<td>□ □□□</td>
<td>□ □□□</td>
</tr>
<tr>
<td>RSR3N</td>
<td>Difference in width W₂</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td>Running parallelism of surface C with respect to surface A</td>
<td>□ □ (based on Fig. 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Running parallelism of surface D with respect to surface B</td>
<td>□ □ (based on Fig. 5)</td>
<td></td>
</tr>
</tbody>
</table>
Radial clearances of types RSR3M/3N are given in Table 2.

![Radial clearance illustration](Image)

Fig. 6 Radial clearance of RSR3M/3N

Table 2 Radial clearances of RSR3M/3N

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Clearance symbol</th>
<th>Normal clearance No symbol</th>
<th>Under a light preload C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td></td>
<td>0 ± + 0</td>
<td>- 0 ± - 0</td>
</tr>
</tbody>
</table>

Note: For light-preload types, only the precision-grade or higher apply.
Precautions on Use

Mounting-surface shoulder height and corner profile

Table 3 lists recommended shoulder heights for mounting the LM block and LM rail. To prevent corner beveling or interference between the LM block and LM rail, the corner of the mounting surface should have some clearance or should be machined to a radius equal to or less than r in Table 3.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>LM rail corner radius r_1 (max.)</th>
<th>LM block corner radius r_2 (max.)</th>
<th>LM rail shoulder height H_1</th>
<th>LM block shoulder height H_2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>r_1</td>
<td>r_2</td>
<td>H_1</td>
<td>H_2</td>
<td>E</td>
</tr>
</tbody>
</table>

We recommend corner-stealing the rail.
Mounting surface accuracy
Table 4 shows mounting surface accuracy for types RSR3M/3N with a normal clearance. In many cases, flatness is combined with other precisions. Accordingly, we recommend applying 70% or less of the value in the table. When using the system in the light-preload (C1 clearance) mode, we recommend applying 50% or less of the value in the table.

Table 4 Mounting surface accuracy of RSR3M/3N (with normal clearance)

<table>
<thead>
<tr>
<th>Flatness of the mounting surface</th>
<th>Tolerance of the axial parallelism</th>
<th>Tolerance of the axial level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit: mm

Recommended tightening torque for mounting the system
Table 5 shows recommended tightening torque of bolts for mounting the LM blocks and the LM rails of RSR3M/3N.

Table 5 Recommended tightening torque for mounting bolts

<table>
<thead>
<tr>
<th>Bolt model No.</th>
<th>Recommended tightening torque [N-m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Applicable to austenitic stainless-steel hexagonal socket-head setscrews.

Mounting the LM Guide
The taps for mounting the LM blocks and LM rails of RSR3M/3N are through. If the mounting bolts are screwed too deeply, they will interfere with the LM block and LM rail and negatively affect accuracy. Use much care when securing the mounting bolts.
In assembling RSR3M or 3N, an iron-made table was mounted to the LM block at the recommended tightening torque in Table 5 and then the radial clearance was adjusted, on the assumption that the LM block would be mounted on an iron table. Therefore, when mounting the LM Guide onto a table other than iron tables or mounting the guide with a torque other than a recommended tightening torque in Table 5, contact THK.

Lubricant
Types RSR3M/3N are shipped with anti-corrosive oil applied (grease is not sealed). In using these LM Guides, regularly apply lubricant to the raceways on the rail according to the usage conditions.

Note 1: When you desire a grease-sealed type, contact THK.
Note 2: RSR3M/3N do not have an oil hole for greasing. When using lubricant, apply it to the raceways of the LM rail.
Standard Type

RSR3M

Note: RSR3M does not have a sealed type.
Note: RSR3M does not have an oil hole for greasing. When using lubricant, directly apply it to the raceways of the LM rail.
Note: There is no joint-type LM rail. Only single-rail types within the production scope indicated above are supported.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Basic load rating</th>
<th>Static permissible load</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (kN)</td>
<td>C₀ (kN)</td>
<td>Mₐ (N-m)</td>
</tr>
<tr>
<td></td>
<td>343.</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

LM rail standard length
LM rail maximum production length

Model-number coding

2 RSR3M C1 + 100L P M – II

1. No. of LM blocks combined on a single axis
2. Model No.
3. Radial clearance symbol (see P.6)
4. LM-rail length (mm)
5. Accuracy grade (see P.5)
6. LM-rail material - stainless steel in this example (standard)
7. No. axes used on the same surface (*)

* Note: A configuration of two axes installed in parallel is given at least two sets of codes.
Long Block Type
RSR3N

Note: RSR3N does not have a sealed type.
Note: RSR3N does not have an oil hole for greasing. When using lubricant, directly apply it to the raceways of the LM rail.
Note: There is no joint-type LM rail. Only single-rail types within the production scope indicated above are supported.

Model-number coding

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Basic load rating</th>
<th>Static permissible load</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (kN)</td>
<td>C₀ (kN)</td>
<td>Mₐ (N·m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM rail standard length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM rail maximum production length</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Note: A configuration of two axes installed in parallel is given at least two sets of codes.
Notes on use

* Precautions when handling the LM block
Dropping or striking the LM block could damage it. Although rubber stoppers are attached to both ends of the LM rail in order to prevent balls from dropping when the LM block disengages from the LM rail, it is advisable to take much care in handling the LM block.

* Operating temperature
Do not use the LM block in temperatures above 80°C as it uses a special resin.

* Service environment
When using the product in special environments such as those places where there are always vibrations, clean rooms, vacuum spaces and abnormally low/high temperatures, contact THK.

* Mounting surface accuracy
Since types RSR3M/3N use indentations with a pointed (gothic) arch shape, any discrepancy in the mounting surface accuracy can adversely affect the operation of the products. The LM Guides should be mounted on highly accurate mounting surfaces.

* Lubrication
Since the greasing interval varies depending on the usage conditions, contact THK.

"LM Guide" is a registered trademark of THK CO., LTD.

Specifications are subject to change without notice.
This catalog has been produced with extra care. However, THK will take no responsibility for any damage caused by an error or omission in this catalog.